Global Leader in International Renewable Industry News

posted in:

Solar cells made through oil-and-water 'self-assembly'

Tuesday, Jan 12, 2010

Researchers have demonstrated a simple, cheap way to create self-assembling electronic devices using a property crucial to salad dressings.

It uses the fact that oil- and water-based liquids do not mix, forming devices from components that align along the boundary between the two.

The idea joins a raft of approaches toward self-assembly, but lends itself particularly well to small components.

The work is reported in Proceedings of the National Academy of Sciences.

Crucially, it could allow the large-scale assembly of high-quality electronic components on materials of just about any type, in contrast to "inkjet printed" electronics or some previous self-assembly techniques.

Specific gravity

Such efforts have until now exploited the effect of gravity, assembling devices through so-called "sedimentation".

In this approach, "blank" devices are etched with depressions to match precisely-shaped components. Simply dumped into a liquid, the components should settle down into the blank device like sand onto a riverbed, in just the right places.

"That's what we tried for at least two years and we were never able to assemble these components with high yield - gravity wasn't working," said Heiko Jacobs of the University of Minnesota, who led the research.

"Then we thought if we could concentrate them into a two-dimensional sheet and then have some kind of conveyor belt-like system we could assemble them with high yields and high speed," he told BBC News.

To do that, the team borrowed an idea familiar to fans of vinaigrette: they built their two-dimensional sheets at the border between oil and water.

They first built a device blank as before, with depressions lined with low-temperature solder, designed for individual solar cell elements.

They then prepared the elements - each a silicon and gold stack a few tens of millionths of a metre across - and put different coatings on each side.

On the silicon side, they put a hydrophobic molecule, one that has a strong tendency to evade contact with water. On the gold side, they put a hydrophilic molecule, which has the converse tendency to seek out water.

By getting the densities of the oil- and water-based parts of the experiment just right, a "sheet" of the elements could be made to "float" between the two, pointing in the right direction thanks to their coatings.

The conveyor belt process is to simply dunk the device blank through the boundary and draw it back slowly; the sheet of elements rides up along behind it, each one popping neatly into place as the solder attracts its gold contact.

The team made a working device comprising 64,000 elements in just three minutes.

Bendy future

Having proved that the concept works, the team is now investigating just how small they can go in terms of individual elements, or how large they can go in finished devices.

The approach should also work for almost any material, stiff or flexible, plastic, metal or semiconductor - a promising fact for future display and imaging applications.

Babak Parviz, a nano-engineering professor at the University of Washington in Seattle, said the technique is a "clear demonstration that self-assembly is applicable across size scales".

"Self-assembly is probably the best method for integrating high-performance materials onto unconventional substrates," he told BBC News.

The method tackles what Dr Parviz said is the most challenging problem - the proper alignment of thousands of parts, each thinner than a human hair. But it also works with the highest-performance materials, he said.

"For example, this method allows one to use single-crystal silicon, which is far superior to other types of silicon for making solar cells."

 

Source: BBC

posted in:

Other Renewable News

Unirac partners with Cobalt Power Systems to supply 397.5 kW Roof Mount (RM), second largest solar roof installation in Palo Alto 25-04-2014
OPDE finishes construction of new 12MWp solar farm in UK 25-04-2014
SPI Solar announces amendment to agreement for Mountain Creek project 24-04-2014
Accenture to help Azure Power expand its solar generation business 24-04-2014
EPIA presents the Global Market Outlook for Photovoltaics 2014-2018 at Intersolar Europe 24-04-2014
Avianca Brasil and Byogy Renewables forge initiative to drive the global approval of Alcohol-to-Jet (ATJ) renewable jet fuel 24-04-2014
Intersolar North America strengthens focus on growing energy storage market 23-04-2014
GDF SUEZ Energy Resources NA again donates renewable energy certificates to the Houston Museum of Natural Science in Honor of Earth Day 23-04-2014
3M celebrates 10-year record of EPA ENERGY STAR sustained excellence award 23-04-2014
SolarWorld powers spread of grass-roots community solar purchasing from coast to coast 23-04-2014